
MATHEMATICS OF COMPUTATION
VOLUME 50, NUMBER 181
JANUARY 1988, PAGES 283-296

The Computation of ir to 29,360,000 Decimal Digits
Using Borweins' Quartically Convergent Algorithm

By David H. Bailey

Abstract. In a recent work [6], Borwein and Borwein derived a class of algorithms based
on the theory of elliptic integrals that yield very rapidly convergent approximations to
elementary constants. The author has implemented Borweins' quartically convergent
algorithm for 1/7r, using a prime modulus transform multi-precision technique, to com-
pute over 29,360,000 digits of the decimal expansion of 7r. The result was checked by
using a different algorithm, also due to the Borweins, that converges quadratically to
7r. These computations were performed as a system test of the Cray-2 operated by the
Numerical Aerodynamical Simulation (NAS) Program at NASA Ames Research Center.
The calculations were made possible by the very large memory of the Cray-2.

Until recently, the largest computation of the decimal expansion of Xr was due to
Kanada and Tamura [12] of the University of Tokyo. In 1983 they computed approxi-
mately 16 million digits on a Hitachi S-810 computer. Late in 1985 Gosper [9] reported
computing 17 million digits using a Symbolics workstation. Since the computation de-
scribed in this paper was performed, Kanada has reported extending the computation
of 7r to over 134 million digits (January 1987).

This paper describes the algorithms and techniques used in the author's computation,
both for converging to 7r and for performing the required multi-precision arithmetic. The
results of statistical analyses of the computed decimal expansion are also included.

1. Introduction. The computation of the numerical value of the constant ir
has been pursued for centuries for a variety of reasons, both practical and theo-
retical. Certainly, a value of ir correct to 10 decimal places is sufficient for most
"practical" applications. Occasionally, there is a need for double-precision or even
multi-precision computations involving ir and other elementary constants and func-
tions in order to compensate for unusually severe numerical difficulties in an ex-
tended computation. However, the author is not aware of even a single case of a
"practical" scientific computation that requires the value of ir to more than about
100 decimal places.

Beyond immediate practicality, the decimal expansion of ir has been of interest
to mathematicians, who have still not been able to resolve the question of whether
the digits in the expansion of ir are "random". In particular, it is widely suspected
that the decimal expansions of ir, e, V, X/2, and a host of related mathematical
constants all have the property that the limiting frequency of any digit is one
tenth, and that the limiting frequency of any n-long string of digits is 10-g. Such
a guaranteed property could, for instance, be the basis of a reliable pseudo-random
number generator. Unfortunately, this assertion has not been proven in even one
instance. Thus, there is a continuing interest in performing statistical analyses on

Received January 27, 1986; revised April 27, 1987.
1980 Mathematic8 Subject Cla88ification (1985 Revmion). Primary 11-04, 65-04.

? 1988 American Mathematical Society
0025-5718/88 $1.00 + S.25 per page

283

284 DAVID H. BAILEY

the decimal expansions of these numbers to see if there is any irregularity that
would suggest this assertion is false.

In recent years, the computation of the expansion of ir has assumed the role as
a standard test of computer integrity. If even one error occurs in the computation,
then the result will almost certainly be completely in error after an initial correct
section. On the other hand, if the result of the computation of ir to even 100,000
decimal places is correct, then the computer has performed billions of operations
without error. For this reason, programs that compute the decimal expansion
of ir are frequently used by both manufacturers and purchasers of new computer
equipment to certify system reliability.

2. History. The first serious attempt to calculate an accurate value for the
constant ir was made by Archimedes, who approximated ir by computing the areas
of equilateral polygons with increasing numbers of sides. More recently, infinite
series have been used. In 1671 Gregory discovered the arctangent series

tan-1(X) = X-
- + - - -

3 5 7
This discovery led to a number of rapidly convergent algorithms. In 1706 Machin
used Gregory's series coupled with the identity

7r = 16 tan- 1 (1/5) -4 tan- 1 (1/239)

to compute 100 digits of ir.
In the nearly 300 years since that time, most computations of the value of ir,

even those performed by computer, have employed some variation of this technique.
For instance, a series based on the identity

7r = 24tan-1 (1/8) + 8tan-1 (1/57) + 4tan-1 (1/239)

was used in a computation of ir to 100,000 decimal digits using an IBM 7090 in
1961 [15]. Readers interested in the history of the computation ir are referred to
Beckmann's entertaining book on the subject [2].

3. New Algorithms for ir. Only very recently have algorithms been discov-
ered that are fundamentally faster than the above techniques. In 1976 Brent [7]
and Salamin [14] independently discovered an approximation algorithm based on
elliptic integrals that yields quadratic convergence to ir. With all of the previous
techniques, the number of correct digits increases only linearly with the number
of iterations performed. With this new algorithm, each additional iteration of the
algorithm approximately doubles the number of correct digits. Kanada and Tamura
employed this algorithm in 1983 to compute ir to over 16 million decimal digits.

More recently, J. M. Borwein and P. B. Borwein [4] discovered another quadrat-
ically convergent algorithm for ir, together with similar algorithms for fast compu-
tation of all the elementary functions. Their quadratically convergent algorithm
for ir can be stated as follows: Let ao = V/, bo = 0, po = 2 + . Iterate

(
2 1/V) bk+ V(+bk) Pk+l = Pkbk+1(1 + ak+l)

ak+1= ~2 b+= ak +bk k1 1 + bk+1

Then Pk converges quadratically to ir: Successive iterations of this algorithm yield
3, 8, 19, 40, 83, 170, 345, 694, 1392, and 2788 correct digits of the expansion of ir.

THE COMPUTATION OF r TO 29,360,000 DECIMAL DIGITS 285

However, it should be noted that this algorithm is not self-correcting for numerical
errors, so that all iterations must be performed to full precision. In other words, in
a computation of ir to 2788 decimal digits using the above algorithm, each of the
ten iterations must be performed with more than 2788 digits of precision.

Most recently, the Borweins [6] have discovered a general technique for obtaining
even higher-order convergent algorithms for certain elementary constants. Their
quartically convergent algorithm for 1/7r can be stated as follows: Let ao = 6- 4V2
and yo = V-1. Iterate

1- (1 _ y4)1/4
Yk+1 = k

ak+1 = ak(l + Yk+1)4 - 22k+3Yk+l(1 + Yk+1 + Yk +).

Then ak converges quartically to 1/7r: Each successive iteration approximately
quadruples the number of correct digits in the result. As in the previous case, each
iteration must be performed to at least the level of precision desired for the final
result.

4. Multi-Precision Arithmetic Techniques. A key element of a very high
precision computation of this sort is a set of high-performance routines for perform-
ing multi-precision arithmetic. A naive approach to multi-precision computation
would require a prohibitive amount of processing time and would, as a result,
sharply increase the probability that an undetected hardware error would occur,
rendering the result invalid. In addition to employing advanced algorithms for such
key operations as multi-precision multiplication, it is imperative that these algo-
rithms be implemented in a style that is conducive for high-speed computation on
the computer being used.

The computer used for these computations is the Cray-2 at the NASA Ames
Research Center. This computation was performed to test the integrity of the
Cray-2 hardware, as well as the Fortran compiler and the operating system. The
Cray-2 is particularly well suited for this computation because of its very large
main memory, which holds 228 = 268, 435,456 words (one word is 64 bits of data).
With this huge capacity, all data for these computations can be contained entirely
within main memory, insuring ease of programming and fast execution.

No attempt was made to employ more than one of the four central processing
units in the Cray-2. Thus, at the same time these calculations were being per-
formed, the computer was executing other jobs on the other processors. However,
full advantage was taken of the vector operations and vector registers of the system.
Considerable care was taken in programming to insure that the multi-precision al-
gorithms were implemented in a style that would admit vector processing. Most key
loops were automatically vectorized by the Cray-2 Fortran compiler. For those few
that were not automatically vectorized, compiler directives were inserted to force
vectorization. As a result of this effort, virtually all arithmetic operations were
performed in vector mode, which on the Cray-2 is approximately 20 times faster
than scalar mode. Because of the high level of vectorization that was achieved using
the Fortran compiler, it was not necessary to use assembly language, nonstandard
constructs, or library subroutines.

286 DAVID H. BAILEY

A multi-precision number is represented in these computations as an (n + 2)-
long array of floating-point whole numbers. The first cell contains the sign of the
number, either 1, -1, or 0 (reserved for an exact zero). The second cell of the array
contains the exponent (powers of the radix), and the remaining n cells contain the
mantissa. The radix selected for the multi-precision numbers is 107. Thus the
number 1.23456789 is represented by the array 1, 0, 1, 2345678, 9000000, 0,0, .. ., 0.

A floating-point representation was chosen instead of an integer representation
because the hardware of numerical supercomputers such as the Cray-2 is designed
for floating-point computation. Indeed, the Cray-2 does not even have full-word
integer multiply or divide hardware instructions. Such operations are performed by
first converting the operands to floating-point form, using the floating-point unit,
and converting the results back to fixed-point (integer) form. A decimal radix was
chosen instead of a binary value because multiplications and divisions by powers of
two are not performed any faster than normal on the Cary-2 (in vector mode). Since
a decimal radix is clearly preferable to a binary radix for program troubleshooting
and for input and output, a decimal radix was chosen. The value 107 was chosen
because it is the largest power of ten that will fit in half of the mantissa of a single
word. In this way two of these numbers may be multiplied to obtain the exact
product using ordinary single-precision arithmetic.

Multi-precision addition and subtraction are not computationally expensive com-
pared to multiplication, division, and square root extraction. Thus, simple algo-
rithms suffice to perform addition and subtraction. The only part of these opera-
tions that is not immediately conducive to vector processing is releasing the carries
for the final result. This is because the normal "schoolboy" approach of beginning
at the last cell and working forward is a recursive operation. On a vector super-
computer this is better done by starting at the beginning and releasing the carry
only one cell back for each cell processed. Unfortunately, it cannot be guaranteed
that one application of this process will release all carries (consider the case of two
or more consecutive 9999999's, followed by a number exceeding 107). Thus it is
necessary to repeat this operation until all carries have been released (usually one
or two additional times). In the rare cases where three applications of this vector-
ized process are not successful in releasing all carries, the author's program resorts
to the scalar "schoolboy" method.

Provided a fast multi-precision multiplication procedure is available, multi-
precision division and square root extraction may be performed economically us-
ing Newton's iteration, as follows. Let x0 and yo be initial approximations to the
reciprocal of a and to the reciprocal of the square root of a, respectively. Then

Yk(- ay 2)
Xk+1 = Xk(2-aXk), Yk+1 = k

both converge quadratically to the desired values. One additional full-precision mul-
tiplication yields the quotient and the square root, respectively. What is especially
attractive about these algorithms is that the first iteration may be performed using
ordinary single-precision arithmetic, and subsequent iterations may be performed
using a level of precision that approximately doubles each time. Thus the total
cost of computation is only about twice the cost of the final iteration, plus the one
additional multiplication. As a result, a multi-precision division costs only about

THE COMPUTATION OF 7r TO 29,360,000 DECIMAL DIGITS 287

five times as much as a multi-precision multiplication, and a multi-precision square
root costs only about seven times as much as a multi-precision multiplication.

5. Multi-Precision Multiplication. It can be seen from the above that the
key component of a high-performance multi-precision arithmetic system is the mul-
tiply operation. For modest levels of precision (fewer than about 1000 digits), some
variation of the usual "schoolboy" method is sufficient, although care must be taken
in the implementation to insure that the operations are vectorizable. Above this
level of precision, however, other more sophisticated techniques have a significant
advantage. The history of the development of high-performance multiply algo-
rithms will not be reviewed here. The interested reader is referred to Knuth [13].
It will suffice to note that all of the current state-of-the-art techniques derive from
the following fact of Fourier analysis: Let F(x) denote the discrete Fourier trans-
form of the sequence x = (xo, X,x2, .. . ,xN 1), and let F-1 (x) denote the inverse
discrete Fourier transform of x:

1V-1 N-1

Fk(x)= Xjjk, Fkj1(X) =kZE Xj-jk
j=0 j=0

where w = e-2,/N is a primitive Nth root of unity. Let C(x, y) denote the convo-
lution of the sequences x and y:

N-1

Ck(X,Y) =E XjYk-j
j=0

where the subscript k - j is to be interpreted as k - j + N if k - j is negative. Then
the "convolution theorem", whose proof is a straightforward exercise, states that

F[C(x, y)] = F(x)F(y)X

or expressed another way,

C(x,y) = F- [F(x)F(y)]

This result is applicable to multi-precision multiplication in the following way.
Let x and y be n-long representations of two multi-precision numbers (without the
sign or exponent words). Extend x and y to length 2n by appending n zeros at the
end of each. Then the multi-precision product z of x and y, except for releasing
the carries, can be written as follows:

ZO = XoYo

Z= XoYl + XlYo

Z2 = XoY2 + XlYl + X2Y0

Zn-1= XoYn-1 + XlYn-2 + + Xn-1YO

Z2n-3 = Xn-1Yn-2 + Xn-2Yn-1

Z2n-2 = Xn-lYn-1

Z2n-1 = 0.

288 DAVID H. BAILEY

It can now be seen that this "multiplication pyramid" is precisely the convolution
of the two sequences x and y, where N = 2n. The convolution theorem states that
the multiplication pyramid can be obtained by performing two forward discrete
Fourier transforms, one vector complex multiplication, and one reverse transform,
each of length N = 2n. Once the resulting complex numbers have been rounded
to the nearest integer, the final multi-precision product may be obtained by merely
releasing the carries as described in the section above on addition and subtraction.

The key computational savings here is that the discrete Fourier transform may
of course be economically computed using some variation of the "fast Fourier trans-
form" (FFT) algorithm. It is most convenient to employ the radix two fast Fourier
transform since there is a wealth of literature on how to efficiently implement this
algorithm (see [1], [8], and [16]). Thus, it will be assumed from this point that
N = 2m for some integer m.

One useful "trick" can be employed to further reduce the computational require-
ment for complex transforms. Note that the input data vectors x and y and the
result vector z are purely real. This fact can be exploited by using a simple pro-
cedure ([8, p. 169]) for performing real-to-complex and complex-to-real transforms
that obtains the result with only about half the work otherwise required.

One important item has been omitted from the above discussion. If the radix 107
is used, then the product of two cells will be in the neighborhood of 1014, and the
sum of a large number of these products cannot be represented exactly in the 48-
bit mantissa of a Cray-2 floating-point word. In this case the rounding operation
at the completion of the transform will not be able to recover the exact whole
number result. As a result, for the complex transform method to work correctly, it
is necessary to alter the above scheme slightly. The simplest solution is to use the
radix 106 and to divide all input data into two words with only three digits each.
Although this scheme greatly increases the memory space required, it does permit
the complex transform method to be used for multi-precision computation up to
several million digits on the Cray-2.

6. Prime Modulus Transforms. Some variation of the above method has
been used in almost all high-performance multi-precision computer programs, in-
cluding the program used by Kanada and Tamura. However, it appears to break
down for very high-precision computation (beyond about ten million digits on the
Cray-2), due to the round-off error problem mentioned above. The input data can
be further divided into two digits per word or even one digit per word, but only with
a substantial increase in run time and main memory. Since a principal goal in this
computation was to remain totally within the Cray-2 main memory, a somewhat
different method was used.

It can readily be seen that the technique of the previous section, including the
usage of a fast Fourier transform algorithm, can be applied in any number field in
which there exists a primitive Nth root of unity w. This requirement holds for the
field of the integers modulo p, where p is a prime of the form p = kN + 1 ([11, p.
85]). One significant advantage of using a prime modulus field instead of the field
of complex numbers is that there is no need to worry about round-off error in the
results, since all computations are exact.

THE COMPUTATION OF r TO 29,360,000 DECIMAL DIGITS 289

However, there are some difficulties in using a prime modulus field for the trans-
form operations above. The first is to find a prime p of the form kN + 1, where
N = 2m. The second is to find a primitive Nth root of unity modulo p. As it turns
out, it is not too hard using a computer to find both of these numbers by direct
search. Thirdly, one must compute the multiplicative inverse of N modulo p. This
can be done using a variation of the Euclidean algorithm from elementary number
theory. Note that each of these calculations needs to be performed one time only.

A more troublesome difficulty in using a prime modulus transform is the fact
that the final multiplication pyramid results are only recovered modulo p. If p is
greater than about 1024 then this is not a problem, but the usage of such a large
prime would require quadruple-precision arithmetic operations to be performed in
the inner loop of the fast Fourier transform, which would very greatly increase the
run time. A simpler and faster approach to the problem is to use two primes, P1
and P2, each slightly greater than 1012, and to perform the transform algorithm
above using each prime. Then the Chinese remainder theorem may be applied to
the results modulo Pi and P2 to obtain the results modulo the product P1P2* Since
P1P2 is greater than 1024, these results will be the exact multiplication pyramid
numbers. Unfortunately, double-precision arithmetic must still be performed in the
fast Fourier transform and in the Chinese remainder theorem calculation. However,
the whole-number format of the input data simplifies these operations, and it is
possible to program them in a vectorizable fashion.

Borodin and Munro ([3, p. 90]) have suggested using three transforms with three
primes P1, P2 and p3, each of which is just smaller than half of the mantissa, and
using the Chinese remainder theorem to recover the results modulo P1P2P3* In this
way, double-precision operations are completely avoided in the inner loop of the
FFT. This scheme runs quite fast, but unfortunately the largest transform that can
be performed on the Cray-2 using this system is N = 219, which corresponds to a
maximum precision of about three million digits.

Readers interested in studying about prime modulus number fields, the Euclidean
algorithm, or the Chinese remainder theorem are referred to any elementary text
on number theory, such as [10] or [11]. Knuth [13] and Borodin [3] also provide
excellent information on using these tools for computation.

7. Computational Results. The author has implemented all three of the
above techniques for multi-precision multiplication on the Cray-2. By employing
special high-performance techniques [1], the complex transform can be made to run
the fastest, about four times faster than the two-prime transform method. However,
the memory requirement of the two-prime scheme is significantly less than either
the three-prime or the complex scheme, and since the two-prime scheme permits
very high-precision computation, it was selected for the computations of ir.

One of the author's computations used twelve iterations of Borweins' quartic
algorithm for 1/ir, followed by a reciprocal operation, to yield 29,360,128 digits
of ir. In this computation, approximately 12 trillion arithmetic operations were
performed. The run took 28 hours of processing time on one of the four Cray-2
central processing units and used 138 million words of main memory. It was started
on January 7, 1986 and completed January 9, 1986. The program was not running
this entire time-the system was taken down for service several times, and the run

290 DAVID H. BAILEY

was frequently interrupted by other programs. Restarting the computation after a
system down was a simple matter since the two key multi-precision number arrays
were saved on disk after the completion of each iteration.

This computation was checked using 24 iterations of Borweins' quadratically
convergent algorithm for ir. This run took 40 hours processing time and 147 million
words of main memory. A comparison of these output results with the first run
found no discrepancies except for the last 24 digits, a normal truncation error.
Thus it can be safely assumed that at least 29,360,000 digits of the final result are
correct.

It was discovered after both computations were completed that one loop in the
Chinese remainder theorem computation was inadvertently performed in scalar
mode instead of vector mode. As a result, both of these calculations used about
25% more run time than would otherwise have been required. This error, however,
did not affect the validity of the computed decimal expansions.

8. Statistical Analysis of ir. Probably the most significant mathematical
motivation for the computation of ir, both historically and in modern times, has
been to investigate the question of the randomness of its decimal expansion. Before
Lambert proved in 1766 that ir is irrational, there was great interest in checking
whether or not its decimal expansion eventually repeats, thus disclosing that ir is
rational. Since that time there has been a continuing interest in the still unan-
swered question of whether the expansion is statistically random. It is of course
strongly suspected that the decimal expansion of ir, if computed to sufficiently high
precision, will pass any reasonable statistical test for randomness. The most fre-
quently mentioned conjecture along this line is that any sequence of n digits occurs
with a limiting frequency of 10-n.

With 29,360,000 digits, the frequencies of n-long strings may be studied for
randomness for n as high as six. Beyond that level the expected number of any
one string is too low for statistical tests to be meaningful. The results of tabulated
frequencies for one and two digit strings are listed in Tables 1 and 2. In the first
table the Z-score numbers are computed as the deviation from the mean divided
by the standard deviation, and thus these statistics should be normally distributed
with mean zero and variance one.

TABLE 1

Single digit statistics

Digit Count Deviation Z-score
0 2935072 - 928 - 0.5709
1 2936516 516 0.3174
2 2936843 843 0.5186
3 2935205 - 795 - 0.4891
4 2938787 2787 1.7145
5 2936197 197 0.1212
6 2935504 - 496 - 0.3051
7 2934083 - 1917 - 1.1793
8 2935698 - 302 - 0.1858
9 2936095 95 0.0584

THE COMPUTATION OF 7r TO 29,360,000 DECIMAL DIGITS 291

TABLE 2

Two digit frequency counts

00 293062 01 293970 02 293533 03 292893 04 294459
05 294189 06 292688 07 292707 08 294260 09 293311
10 294503 11 293409 12 293591 13 294285 14 294020
15 293158 16 293799 17 293020 18 293262 19 293469
20 293952 21 293226 22 293844 23 293382 24 293869
25 293721 26 293655 27 293969 28 293320 29 293905
30 293718 31 293542 32 293272 33 293422 34 293178
35 293490 36 293484 37 292694 38 294152 39 294253
40 294622 41 294793 42 293863 43 293041 44 293519
45 293998 46 294418 47 293616 48 293296 49 293621
50 292736 51 294272 52 293614 53 293215 54 293569
55 294194 56 293260 57 294152 58 293137 59 294048
60 293842 61 293105 62 294187 63 293809 64 293463
65 293544 66 293123 67 293307 68 293602 69 293522
70 292650 71 294304 72 293497 73 293761 74 293960
75 293199 76 293597 77 292745 78 293223 79 293147
80 292517 81 292986 82 293637 83 294475 84 294267
85 293600 86 293786 87 293971 88 293434 89 293025
90 293470 91 292908 92 293806 93 292922 94 294483
95 293104 96 293694 97 293902 98 294012 99 293794

The most appropriate statistical procedure for testing the hypothesis that the
empirical frequencies of n-long strings of digits are random is the x2 test. The x2
statistic of the k observations X1, X2, . . ., Xk is defined as

k (X, - E)2

i=1

where Ei is the expected value of the random variable Xi. In this case k = 1O and
Ei = 10-'d for all i, where d = 29,360,000 denotes the number of digits. The mean
of the x2 statistic in this case is k - 1 and its standard deviation is V2(k -1). Its
distribution is nearly normal for large k. The results of the x2 analysis are shown
in Table 3.

TABLE 3

Multiple digit X2 statistics

Length x2 value Z-score
1 4.869696 - 0.9735
2 84.52604 - 1.0286
3 983.9108 - 0.3376
4 10147.258 1.0484
5 100257.92 0.5790
6 1000827.7 0.5860

Another test that is frequently performed on long pseuido-random sequences is
an analysis to check whether the number of n-long repeats for various n is within
statistical bounds of randomness. An n-long repeat is said to occur if the n-long

292 DAVID H. BAILEY

digit sequence beginning at two different positions is the same. The mean M and
the variance V of the number of n-long repeats in d digits are (to an excellent
approximation)

M 10nd 2 11 10-nd2
2 18

Tabulation of repeats in the expansion of ir was performed by packing the string
beginning at each position into a single Cray-2 word, sorting the resulting array,
and counting equal contiguous entries in the sorted list. The results of this analysis
are shown in Table 4.

TABLE 4

Long repeat statistics

10 42945 43100. - 0.677
11 4385 4310. 1.033
12 447 431. 0.697
13 48 43.1 0.675
14 6 4.31 0.736
15 1 0.43 0.784

A third test frequently performed as a test for randomness is the runs test. This
test compares the observed frequency of long runs of a single digit with the number
of such occurrences that would be expected at random. The mean and variance of
this statistic are the same as the formulas for repeats, except that d2 is replaced by
2d. Table 5 lists the observed frequencies of runs for the calculated expansion of 'r.

The frequencies of long runs are all within acceptable limits of randomness. The
only phenomenon of any note in Table 5 is the occurrence of a 9-long run of sevens.
However, there is a 29% chance that a 9-long run of some digit would occur in
29,360,000 digits, so this instance by itself is not remarkable.

TABLE 5

Single-digit run counts

Length of Run
Digit 5 6 7 8 9

0 308 29 3 0 0
1 281 21 1 0 0
2 272 23 0 0 0
3 266 26 5 0 0
4 296 40 6 1 0
5 292 30 4 0 0
6 316 33 3 0 0
7 315 37 6 2 1
8 295 36 3 0 0
9 306 40 7 0 0

9. Conclusion. The statistical analyses that have been performed on the ex-
pansion of ir to 29,360,000 decimal places have not disclosed any irregularity. The
observed frequencies of n-long strings of digits for n up to 6 are entirely unremark-
able. The numbers of long repeating strings and single-digit r-ns are completely

THE COMPUTATION OF 7r TO 29,360,000 DECIMAL DIGITS 293

acceptable. Thus, based on these tests, the decimal expansion of ir appears to be
completely random.

Appendix

Selected Output Listing

Initial 1000 digits:

3.
14159265358979323846264338327950288419716939937510
58209749445923078164062862089986280348253421170679
82148086513282306647093844609550582231725359408128
48111745028410270193852110555964462294895493038196
44288109756659334461284756482337867831652712019091
45648566923460348610454326648213393607260249141273
72458700660631558817488152092096282925409171536436
78925903600113305305488204665213841469519415116094
33057270365759591953092186117381932611793105118548
07446237996274956735188575272489122793818301194912
98336733624406566430860213949463952247371907021798
60943702770539217176293176752384674818467669405132
00056812714526356082778577134275778960917363717872
14684409012249534301465495853710507922796892589235
42019956112129021960864034418159813629774771309960
51870721134999999837297804995105973173281609631859
50244594553469083026425223082533446850352619311881
71010003137838752886587533208381420617177669147303
59825349042875546873115956286388235378759375195778
18577805321712268066130019278766111959092164201989

Digits 4,999,001 to 5,000,000:

49480754784558100182731931632488412804488722296956
79855015464855780486736535227902836997918084867230
64962221004527085768335035212069684801817137616329
97561738425160340472537100056351640342162492027179
66824926458930960182645026923102266570541641475347
20341554913770421505764452807809035248393621093031
02288096238486877923145240841637271180953058890040
68843766781431498914299893621278545260143140439048
49938801556336059513116731891132765777881364690708
47036863411196323063886507480852125682842257852524
03086993703255692093960818587414181230484153204049
20234989002732447593020323794790776444752398445514
67304403210968985244961967143433964895893190552338
49818852746844924836314634250006421630628686858848
27453318669926734730642735036364002856022218966350
11429182634319974163253372368798553451111253055262
39104082639970934508146672521381105913047210052428
18988626533169469331951675296209306752291590715999
89846179288059262000848638138811280944056488021060
48865855191846702365421761783505181721320764619715

294 DAVID H. BAILEY

Digits 9,999,001 to 10,000,000:

55097818243516728227849910720400286757907904466335
12718202979525150617725334066894988956424703269230
15399820900390166275224338184424808589395293652582
53635658584175485536744818650289245188206447853280
79129675504865572929083083485483937583334671019089
12067114536955173140929461823466478725289529974204
02127635235923293305770179423865225963240694027480
60412880303092452481034941582735932443887273109397
41634889604695819245395151341043433998381874650972
33692635225791472454244401326312964396391209607800
16344851199125420819737407446045899742145731042313
64456486501937801063526603744056568823861389375443
97351681296831567911618884222251141477322612331396
18606080373110348692660933940438416300326143449280
50821131575737727739821551522286509997662432587213
93393445902091662272905493493827178205126669021149
47192311380933822311224099588372246332501222323378
96895269025366263941267010317327864987170257149617
76105155492579857592045532468944687427025046397905
65326553194060999469787333810631719481735348955897

Digits 14,999,001 to 15,000,000:

75161912582729034437123279749256311511925243956985
41466735069194815163837226073925151887751751659741
00622880726448602209456930414488539882981108512492
30626088375966783621649753412539683084922711342513
94953995693625441331401738133085848172315887473225
66862139251938540102249475575494947158395623512785
67033888824495551084462300472407612165952784386252
83059992302223284865934566262929748436827730812030
14434593689874259766415514412097984133998015934584
35393475650624323850160432731918805126406671871353
77555766214670931813151162879500509710551795152818
09093154481058044767364122166100032425098263166257
41730518220480715488224616563891344046934208103238
39903254029881746342496583186836947486194257533540
36331223838222392494056270856378033056213544686593
02986821714952808585949418676532291067339817684850
77576151785057277099880627370814385794117668763599
75814499149890314594098525960336377989988228138579
03954608500076180754880433958468619641092762653446
79645205263473393286074979323931503141172775669803

THE COMPUTATION OF 7r TO 29,360,000 DECIMAL DIGITS 295

Digits 19,999,001 to 20,000,000:

24662421652199659486815804456870197576438951607697
86758526528445124126249995515004465281646092893016
37396198596248627116552469686381679679898926165214
19985145392716546108714664257998278750239431446690
24524827883001435830699295155565194378002452231513
03498450165135282534109758167508041457187906821950
98156889669401540575560430489547131781464796920586
99611799897126388736531564345333853581593559913668
62608486227029865668230856391322081859205243349223
41898466479821052634622968628766495150696262416056
24275201300452308788083860012754008114751496913646
62422297630443481605116791864334302662386921297850
27885235888942133721123400642720173755448172632485
38990548569368292370090889371435442648824207842546
28067400727949203553263884395310176843535902614634
76307233029969045465206192626213143248919480318684
24091340888618503237670440877047193079665717842568
49026897445701681738816789861189706430445720674936
81903857815020793466156644931359073005891342758785
95072447895232808191116291055801380049338634527644

Digits 24,999,001 to 25,000,000:

64626376657788401626872035835150250932381126804132
24527774629670113871130617683224437149346115597163
91099108362268853888484703799982396604187954247350
36635859521304516872709809678948655853409228442863
24948936001342207955968740967092110719683856558205
30816048151902240856062148774123551023529985810792
74189214723685203602121713995138514107079374902532
54350785997288413483911434952219864948321330490074
60146435121254311259573947301142531184570914224080
72612210306331872567179327168155609249989038137333
66960257521334843154895361888436208731274888674781
18373984739313750077149269011462219615798047067514
35050981335283641909759090614464729227662129370246
47057090874450108027231969863517024941726518038367
32762891741863822149208539226376382907305941739639
07549588865849168186491743776278287261919660505923
92475738836587226649359524383297861404378228288281
73596312642574370611956801297356036342637793562761
38037507909491563108238168922672241753290045253446
07864115924597806944245511285225546774836191884322

296 DAVID H. BAILEY

Digits 29,359,001 to 29,360,000:

34192841788915229643368473881977698539005746219846
69525347577001729886543392436261840972591968259157
61107476294007303074005235627829787025544075405543
99895071530598162189611315050419697309728290606067
18890116138206842589980215445395753593792898823575
01412347486672046935635735777380648437308573291840
62108496330974827689411268675222975523230623956833
62631148916063883977661973091499155192847894109691
39612265329351195978725566764256462895375180907449
49363092921314127640888510170422584084744149319118
65755825721772836144977978766052285469047197596264
76680055360842209689517737135008611890452433015212
37693745702070338988940123376693961057269535278146
99719136307074643201853864071307997507974509883554
65961575782849747512645786441130845325323149405419
17263364899647912032878171893387317819324912382342
18648271763723022561720016348368584955658165112489
95446848720693621957797943429494640258419939089135
34266985232776239314365259670832026370250924776814
70490971424493675414330987259507806654322272888253

NAS Systems Division
NASA Ames Research Center
Mail Stop 258-5
Moffett Field, California 94035

1. D. H. BAILEY, "A high-performance fast Fourier transform algorithm for the Cray-2," J.
Supercomputing, v. 1, 1987, pp. 43-60.

2. P. BECKMANN, A History of Pi, Golem Press, Boulder, CO, 1971.
3. A. BORODIN & I. MUNRO, The Computational Complexity of Algebraic and Numeric Problems,

American Elsevier, New York, 1975.
4. J. M. BORWEIN & P. B. BORWEIN, "The arithmetic-geometric mean and fast computation

of elementary functions," SIAM Rev., v. 26, 1984, pp. 351-366.
5. J. M. BORWEIN & P. B. BORWEIN, "More quadratically converging algorithms for 7r,"

Math. Comp., v. 46, 1986, pp. 247-253.
6. J. M. BORWEIN & P. B. BORWEIN, Pi and the AGM-A Study in Analytic Number Theory

and Computational Complexity, Wiley, New York, 1987.
7. R. P. BRENT, "Fast multiple-precision evaluation of elementary functions," J. Assoc. Comput.

Mach., v. 23, 1976, pp. 242-251.
8. E. 0. BRIGHAM, The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, N. J., 1974.
9. W. GOSPER, private communication.

10. EMIL GROSSWALD, Topics from the Theory of Numbers, Macmillan, New York, 1966.
11. G. H. HARDY & E. M. WRIGHT, An Introduction to the Theory of Numbers, 5th ed., Oxford

Univ. Press, London, 1984.
12. Y. KANADA & Y. TAMURA, Calculation of 7r to 10,013,395 Decimal Places Based on the

Gauss-Legendre Algorithm and Gauss Arctangent Relation, Computer Centre, University of Tokyo,
1983.

13. D. KNUTH, The Art of Computer Programming, Vol. 2: Seminumerical Algorithms, Addison-
Wesley, Reading, Mass., 1981.

14. E. SALAMIN, "Computation of ir using arithmetic-geometric mean," Math. Comp., v. 30,
1976, pp. 565-570.

15. D. SHANKS & J. W. WRENCH, JR., "Calculation of 7r to 100,000 decimals," Math. Comp.,

v. 16, 1962, pp. 76-99.
16. P. SWARZTRAUBER, "FFT algorithms for vector computers," Parallel Comput., v. 1, 1984,

pp. 45-64.

